CohereEmbeddings
This will help you get started with Cohere embedding models using LangChain. For detailed documentation on CohereEmbeddings
features and configuration options, please refer to the API reference.
Overview
Integration details
Provider | Package |
---|---|
Cohere | langchain-cohere |
Setup
To access Cohere embedding models you'll need to create a/an Cohere account, get an API key, and install the langchain-cohere
integration package.
Credentials
Head to cohere.com to sign up to Cohere and generate an API key. Once you’ve done this set the COHERE_API_KEY environment variable:
import getpass
import os
if not os.getenv("COHERE_API_KEY"):
os.environ["COHERE_API_KEY"] = getpass.getpass("Enter your Cohere API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
The LangChain Cohere integration lives in the langchain-cohere
package:
%pip install -qU langchain-cohere
Instantiation
Now we can instantiate our model object and generate chat completions:
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(
model="embed-english-v3.0",
)
Indexing and Retrieval
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials.
Below, see how to index and retrieve data using the embeddings
object we initialized above. In this example, we will index and retrieve a sample document in the InMemoryVectorStore
.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'
Direct Usage
Under the hood, the vectorstore and retriever implementations are calling embeddings.embed_documents(...)
and embeddings.embed_query(...)
to create embeddings for the text(s) used in from_texts
and retrieval invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single texts
You can embed single texts or documents with embed_query
:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[-0.022979736, -0.030212402, -0.08886719, -0.08569336, 0.007030487, -0.0010671616, -0.033813477, 0.0
Embed multiple texts
You can embed multiple texts with embed_documents
:
text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[-0.028869629, -0.030410767, -0.099121094, -0.07116699, -0.012748718, -0.0059432983, -0.04360962, 0.
[-0.047332764, -0.049957275, -0.07458496, -0.034332275, -0.057922363, -0.0112838745, -0.06994629, 0.
API Reference
For detailed documentation on CohereEmbeddings
features and configuration options, please refer to the API reference.
Related
- Embedding model conceptual guide
- Embedding model how-to guides